A note on compound renewal risk models with dependence

نویسندگان

  • Hélène Cossette
  • Etienne Larrivée-Hardy
  • Etienne Marceau
  • Julien Trufin
چکیده

Over the last decade, there have been a significant amount of research works on compound renewal risk models with dependence. These risk models assume a dependence relation between interclaim times and claim amounts. In this paper, we pursue their investigation. We apply change of measure techniques within the compound renewal risk models with dependence to obtain exact expressions for the Gerber-Shiu discounted penalty function. We propose a more general approach than the usual one based on the random walk associated to the risk process as it is presented in the literature. More refined, our method keeps the embedded information in the sequence of claim amounts and interclaim times and enables us to derive an exact expression for the Gerber-Shiu discounted penalty function. Simulation is one of the advantages of change of measure techniques since we can find a new probability measure under which ruin occurs almost surely. In this paper, we investigate the importance sampling method based on change of measure techniques to compute several ruin measures. Numerical illustrations are carried out for specific bivariate distributions of the interclaim time and the claim amount to approximate interesting ruin measures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Explicit ruin formulas for models with dependence among risks

We show that a simple mixing idea allows to establish a number of explicit formulas for ruin probabilities and related quantities in collective risk models with dependence among claim sizes and among claim inter-occurrence times. Examples include compound Poisson risk models with completely monotone marginal claim size distributions that are dependent according to Archimedean survival copulas a...

متن کامل

Uniform Estimate of the Finite-Time Ruin Probability for All Times in a Generalized Compound Renewal Risk Model

We discuss the uniformly asymptotic estimate of the finite-time ruin probability for all times in a generalized compound renewal risk model, where the interarrival times of successive accidents and all the claim sizes caused by an accident are two sequences of random variables following a wide dependence structure. This wide dependence structure allows random variables to be either negatively d...

متن کامل

A Note on the Bivariate Maximum Entropy Modeling

Let X=(X1 ,X2 ) be a continuous random vector. Under the assumption that the marginal distributions of X1 and X2 are given, we develop models for vector X when there is partial information about the dependence structure between X1  and X2. The models which are obtained based on well-known Principle of Maximum Entropy are called the maximum entropy (ME) mo...

متن کامل

Risk Management in Oil Market: A Comparison between Multivariate GARCH Models and Copula-based Models

H igh price volatility and the risk are the main features of commodity markets. One way to reduce this risk is to apply the hedging policy by future contracts. In this regard, in this paper, we will calculate the optimal hedging ratios for OPEC oil. In this study, besides the multivariate GARCH models, for the first time we use conditional copula models for modelling dependence struc...

متن کامل

Fractional Poisson Process: Long-Range Dependence and Applications in Ruin Theory

We study a renewal risk model in which the surplus process of the insurance company is modeled by a compound fractional Poisson process. We establish the long-range dependence property of this non-stationary process. Some results for the ruin probabilities are presented in various assumptions on the distribution of the claim sizes. AMS 2000 subject classifications: Primary 60G22, 60G55, 91B30; ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 285  شماره 

صفحات  -

تاریخ انتشار 2015